

Changer la rivière ou les équations sélectionnées

○ Laboratory		Choose equations
Annie Creek Annie Creek Arbucies Big wood Black River near Galesville Blackmare Blue river below Green Mountain Reserv	Et observer ce qui se passe sur la figure	Ackers-White Bagnold Camenen-Larson Einstein-Brown Engelund Meyer-Peter Muller Parker79 Wilcock Crowe Wong-Parker Lefort17 Parker90 Recking Rickenmann Schocklitch
Boise		Van Rijn

et voir ce qui se passe...

C'est presque terminé avec cette page: Vous en conclurez que les équations sont très différentes, sont sensibles aux données d'entrées et ne correspondent pas toujours aux mesures. Une difficulté dans un projet de transport solide sera de faire un choix entre les équations et d'évaluer les incertitudes.

Passez du temps à jouer avec les différents boutons puis passez à la page suivante de ce document.

Pente (m/m):

0.02

0.01

hard	a the		
Bienvenue	La base de Données	Votre projet (Bas	ETAPE 2 : Cliquer sur selection multicritère
Sélectionne	er une rivièr 🗉 Sélec	ction multicritère	

Un menu permettant de Un tal saisir des critères de donné sélection dans la base Sélection multicritère Sélection multicritère Résultat de la sélection : 1 Type de données

Un tableau présentant les jeux de données sélectionnés

\checkmark		Résultat de la sélection :	Table :> Graphe					Search:
Type de données	*	Rivière	Pente (mim): 💠	D50(mm)	D84(mm)	Largeur (m): 👌	Morphologie	Technique
Morphologie		1 Annie Creek	0.0026	10	21	7.3	Riffle-pool	Helley-Smith 76 mm
norpriologio		2 Arbucies	0.0095	2.2	20	5.755	Riffle-pool	Helley-Smith 76 mm
Technique de mesure	-	3 Big wood	0.0091	116	250	12.76	Plane Bed	Helley-Smith 76 mm
		4 Black River near Galesville	0.00023	0.45	0.9	117	Sand bed	Helley-Smith 76 mm
nte (m/m):		5 Blackmare	0.03	95	220	7.425	Plane Bed	Helley-Smith 76 mm
		6 Blue river below Green Mountai	in Reserv 0.0026	58	220	34	Riffle-pool	Helley-Smith 76 mm
) (mm):		7 Boise	0.0038	70	141	54.86	Riffie-pool	Helley-Smith 76 mm
		8 Borgne d'Arolla	0.03	11	19	2	Step-pool	Helley-Smith 76 mm
		9 Bridge Cr	0.067	30	63	2.3	Plane Bed	Helley-Smith 76 mm
(mm):		10 Bruneau	0.0054	41	140	13.92	Riffie-pool	Helley-Smith 76 mm
		11 Buffalo Fork	0.0025	18	52	45	Riffle-pool	Helley-Smith 76 mm

Remarque: alors que la page précédente n'affichait qu'un seul jeu de données à la fois, cette page affiche la base de données entière.

Cliquer plusieurs fois sur le bouton orange Résultat de la sélection : Table <> Graphe

L'écran alterne entre le tableau et une figure où sont affichées toutes les données sélectionnées

Sélectionner une rivière	Sélection multicritère		
	R	sultat de la sélection : Table <> Graphe	
Type de données	•	8	Afficher avec D50 D84
Morphologie	•		Afficher en X avec:
Technique de mesure	•		Afficher en Y avec:
Pente (m/m):	à		⊻ X log ⊻ Y log
D50 (mm):			Etirer axe X
D84 (mm):		[™] / ₂ 5e-03 1e-02 5e-02 1e-01 5e-01 1e+00 5e+00 1e+01 q(m3/s/m)	et es es er es ti is is ir is 2 Etirer axe Y

Faire une sélection

Par exemple sélectionner les données ayant une pente dans la gamme 1%-2%

Et voyez ce qui se passe à la fois dans le tableau et sur la figure.

Continuez ainsi avec les autres paramètres avant de passer au bas de l'écran.

Déplacez-vous sur la seconde partie de l'écran:

1.0

Tester les équations: ?

Equation	E2(%)	E5(%)	E10(%)
Bagnold	NA	NA	NA
Einstein-Brown	NA	NA	NA
Engelund-Hansen	NA	NA	NA
Meyer-Peter & Muller	NA	NA	NA
Parker79	NA	NA	NA
Recking	NA	NA	NA
Rickenmann	NA	NA	NA
Schoklitsch	NA	NA	NA
Smart and Jaeggi	NA	NA	NA
Van-Rijn	NA	NA	NA
Wilcock Crowe	NA	NA	NA
Parker90	NA	NA	NA
Lefort	NA	NA	NA
Camenen-Larson	NA	NA	NA
Wong-Parker	NA	NA	NA
Ackers-White	NA	NA	NA

Choisir des équations Ackers-White Bagnold Camenen-Larson Einstein-Brown Engelund Lefort17 Meyer-Peter Muller Parker79 Parker90 Recking Rickenmann Schocklitch Smart Jaeggi Van Rijn Wilcock Crowe Wong-Par Lancer le calcul Calcul avec : ● Q ○ H Corriger la contrainte Corriger les effets de parois en canal Supprimer la fraction sableuse pour calcul avec Parker90 La Exporter les calculs Afficher avec: () E2 O E5 E10

On voit réapparaitre les équations de transport. Cliquer sur 'Lancer le calcul'.

Les équations sélectionnées sont testées sur la sélection des données

Les résultats sont présentés dans le tableau de gauche (plus le score est élevé, mieux c'est) et sur la figure.