Cette courte note explique les premiers pas vers un calcul de transport solide avec BedloadWeb

Si vous avez un compte BedloadWeb commencez par vous connecter. Sinon commencez la saisie :

Cliquer sur 'Votre projet'

1 Créez une courbe granulométrique (appelée GSD dans la suite)

Cliquer sur 'Granulometrie'.

Ψ	D(mm)	%)
1	2	
2	4	
3	8	
4	16	
5	32	

Le menu de droite offre 2 possibilités. 'Saisie' affiche une table où vous pouvez saisir vos mesures (D=Classe de diamètre, Nombre=Nombre de grains dans cette classe).

Mais pour simplifier, nous utiliserons ici le modèle GSD proposé par BeloadWeb: il suffit de saisir une valeur dans la zone de texte 'D50'.

Une courbe est créée automatiquement. Cliquez sur le bouton 'Enregistrer'.

C'est fait ! On a créé une granulométrie (appelée GSD1) composée d'un échantillon nommé ECH1.

Projects Management	> Granulometry	> Cross section	> Hydraulic	> Sediment transport	> Hydrology	> Sediment budgel	> Synthesis				
Sam	ples :							Gra	in size	distribution	:
 Input options: Enter data 	dal	00 -							G	SD1	
D50(mm) (must be >=2)	uei	8 -			/				~	Cop	у
25	ECH1	- 80 - 24						Open		New	v
D84(mm) (defaut is D84=2	2.1050)	~ 64 -						Save		Dele	te
Upper limit of the finer cla the distribution (Defaut =	ass of San 2mm)	ле 8-									
	Ne	w 0-	1- 01	1-100	1-101	1002	1-102		D%	D(mm)	
% for the finer class (defa	ut is Dele	ete	1e-01	1e+00	D(mm)	1e+02	1e+03		D5	1	
10%)									D10	2	

Pour un calcul de charriage, nous pouvons nous arrêter ici et passer à ce qui suit.

Mais:

- vous pouvez ajouter de nouveaux échantillons à ce GSD en cliquant sur «Nouveau» dans le menu de gauche et en répétant l'opération.
- vous pouvez créer autant de GSD que vous le souhaitez en cliquant sur «Nouveau» dans le menu de droite, et en répétant l'opération. Chaque échantillon doit être sauvegardé avant d'enregistrer une distribution granulométrique (autrement dit toujours cliquer sur save avant save)
 - une fois que vous avez créé et enregistré plusieurs GSD, vous pouvez les afficher à l'écran avec le bouton «ouvrir»

2 Créez une géométrie de lit

Cliquer sur 'Section'.

Depuis l'interface, vous pouvez créer une section soit en téléchargeant un fichier xz.txt (deux colones nomées X et Z séparées par une tabulation), soit en entrant manuellement les valeurs XZ dans le tableau de droite. Pour plus de simplicité nous utiliserons la modélisation trapèze proposée par BeloadWeb

Vous voyez apparaitre à l'écran:

Entrez les valeurs dans le tableau de gauche, par ordre croissant pour les colonnes 1 et 2:

Vous avez créé une section transversale complexe, composée d'un chenal principal situé à l'intérieur d'un chenal d'inondation. Jouez avec les boutons coulissants à droite et voyez ce qui se produit.

Cliquez sur «revenir à la saisie pour valider» pour revenir au menu principal de 'section'.

Les données de section sont automatiquement reportées dans le tableau de gauche et vous pouvez les modifier manuellement.

Utilisez les curseurs à droite pour délimiter **le lit mineur** (où les crues principales se produisent) et **le lit actif** (partie du lit qui est morphodynamiquement actif pour les crues courantes et où s eroduit le transport solide). Généralement, le lit mineur et le lit actif sont confondus.

Entrez la pente. Par exemple 1% (S=0.01):

C'est fait, vous pouvez enregistrer la section avec le bouton Enregistrer. Le nom **SEC1** apparaît à l'écran.

Nous nous arrêtons ici pour cet exemple mais vous pouvez créer autant de sections que vous le souhaitez.

Nous n'avons plus de données à saisir. Dans ce qui suit, nous allons simplement jouer avec les <u>curseurs.</u>

<u>3 L'hydraulique</u>

	Welcome	Data Base	Your project (E	Basic) Y	our proje	ct (Advanced)
Cliquer sur on 'Hydraulique'	Projects Manage	ement >	Granulometry	> Cross s	ection	> Hydraulic

La section **SEC1** s'affiche. Dessous la figure, vous pouvez voir que la distribution granulométrique **GSD1** a été automatiquement affectée à chaque partie du lit (elle pourrait être modifiée en créant plusieurs GSD dans le menu GSD si vous considérez que chaque partie du lit a une granulométrie différente).

Changez la hauteur d'eau avec le bouton coulissant et voyez ce qui se passe

C'est tout pour l'hydraulique. Continuez à jouer avec les différents boutons et voyez ce qui se passe.

4 Transport solide

Cliquez sur le bouton 'Transport solide'

 Welcome
 Data Base
 Your project (Basic)
 Your project (Advanced)
 Help

 Projects Management
 > Granulometry
 > Cross section
 > Hydraulic
 > Sediment transport

Ce que vous voyez est un résumé de ce qui a déjà été créé. Le premier panneau de la figure présente les modèles de transport solide (tels que sélectionnés dans la zone de sélection à droite de l'écran) qui ont été construits pour la section **SEC1** et la granulométrie **GSD1**.

Changez la hauteur de l'eau et voyez ce qui se passe:

Le deuxième panneau de la figure et le tableau de droite affichent les valeurs de transport solide calculées par chaque équation pour la hauteur d'écoulement indiquée. Le dernier panneau de la figure présente la distribution granulométrique de ce qui est transporté (qui est généralement plus fine que le matériau du lit).

Vous pouvez jouer avec les différents boutons et voir ce qui se passe.

C'est terminé!!! Vous avez fait un calcul de transport solide. Retourner en première page et sauvegardez votre projet.

Remarque: à ce stade, si vous n'êtes pas connecté à un compte, la seule possibilité dont vous disposez pour enregistrer cette saisie est d'utiliser le menu « Sauvegarde locale». Toutes les données seront enregistrées dans un fichier txt que vous pourrez conserver sur votre ordinateur, et réutiliser plus tard avec le même menu.

Pour aller plus loin : le BILAN SEDIMENTAIRE

En quelques clics supplémentaires vous pouvez calculer un bilan sédimentaire.

1) Créer un hydrogramme Q(t):

Bienvenue	La base de Données	Votre projet (Basique)	Votre projet (Avancé)	Aide		
Gérer les Projets	> Granulométrie	> Section > Hydr	aulique > Transport solic	e > Hydrologie	>Bilan sédimentaire	> Synthèse

Vous pouvez importer un hydrogamme au format texte (deux colonnes T,Q séparées par une tabulation). Mais pour cet exemple on va générer automatiquement un hydrogramme simplifié avec BedloadWeb. Une section doit être ouverte (voir ci-dessus). Cliquez sur 'Paramètre'

	? Construire un h	? Construire un hydrogramme				
Option de calcul		Paramètres				
 Débits classés 	T Montee (h)	Q pointe (m3/s)				
	10	430.03117670620				
	Tbase (h)	Qseuil (m3/s)				
Saisie de l'hydologie	20	215.01558835310				
Paramètres	Durée (h)	Qmin (m3/s)				
? Importer un nomen	40	43.003117670620				
Browse No file selected						
		Appliquer				

Des valeurs sont automatiquement proposées, et lorsqu'on clique sur 'Appliquer' un hydrogramme théorique triangulaire compatible avec la section d'écoulement (hauteur d'eau maximum pouvant passer dans la section) est généré :

Il faut le sauvegarder ce qui crée un objet 'HYD1'.

Gestion des donnees hydrologiques	
Sélectionner:	HYD1
~	Gestion des donnees hydrologiques
Ouvrir	Sélectionner:
Enregistrer	=>

Vous pouvez créer autant d'hydrogrammes que vous voulez et les gérer avec le menu de la page.

2) Créer le bilan sédimentaire

Déplacez-vous sur l'onglet suivant :

Le nom de la section ouverte dans l'onglet « Section » est rappelé en haut à droite.

Option de calcul Hydrogramme Débits classés Sélectionner: HYD1 Hydrologie local ?	Ackers-White Bagnold Camenen-Larson Einstein-Brown Engelund Lefort17 Meyer-Peter Muller Parker79 Parker90 Recking Rickenmann Schocklitch Smart Jaeggi Van Rijn Wilcock Crowe Wong-Parker	Bilan sédimentaire ● Volume réel ○ Volume apparent ○ g ○ Kg ● m3 ○ t	SEC1 S: 0.01 m/m D50: 44.9 mm D84: 90.3 mm		
		Equation m3 (reel)			
		Ackers-White 0.00	Options graphiques		
	Autoriser calcul au delà de la cote maximum de la section Corriger la contrainte Corriger les effets de parois en canal	Bagnold 0.00	Hydrogramme O Volume transporté		
		Camenen Larson 0.00	G Afficher la légende		
		Einstein-Brown 0.00	✓ Log		
		Engelund 0.00	LExporter la figure		

En cliquant sur le menu déroulant de gauche vous pouvez sélectionner l'hydrogramme Q(t) précédemment créé. Cliquer sur « Ouvrir » et l'hydrogramme et automatiquement associé à la section (pour laquelle on a déjà construit le sédimentogramme Qs(Q) dans la page 'Transport Solide').

Le transport solide Qs(t) est alors calculé pour chacune des équations sélectionnées. Le graphe présente l'évolution temporelle.

Les volumes transportés par cet évènement sont présentés dans le tableau à droite ou graphiquement en cliquant sur « Volume transporté »:

